Aqueous cigarette smoke extract induces a voltage-dependent inhibition of CFTR expressed in Xenopus oocytes.

نویسندگان

  • A R Moran
  • Y Norimatsu
  • D C Dawson
  • K D MacDonald
چکیده

The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel inhabits the apical membrane of airway epithelia, where its function is essential for mucus hydration, mucociliary clearance, and airway defense. Chronic obstructive pulmonary disease (COPD), most often a consequence of cigarette smoke (CS) exposure, affects 15 million persons in the US. Clinically, COPD is characterized by many of the salient features of cystic fibrosis lung disease, where CFTR is either absent or reduced in function. CS is an acidic aerosol (pH 5.3 to 6.3) reported to contain over 4,000 constituents. Acute CS exposure has been reported to decrease airway transepithelial voltage in vivo and short-circuit current in vitro; however, the mechanistic basis of these effects is uncertain. The goal of the studies described here was to develop a bioassay to characterize the effects of aqueous CS preparations on the channel function of CFTR. We studied aqueous CS extract (CSE) prepared in our laboratory, as well as commercial cigarette smoke condensate (CSC) in Xenopus oocytes expressing human CFTR. Application of CSE at pH 5.3 produced a reversible, voltage-dependent inhibition of CFTR conductance. CSE neutralized to pH 7.3 produced less inhibition of CFTR conductance. Serial dilution of CSE revealed a dose-dependent effect at acidic and neutral pH. In contrast, CSC did not inhibit CFTR conductance in oocytes. We conclude that one or more components of CSE inhibits CFTR in a manner similar to diphenylamine-2-carboxylate, a negatively charged, open-channel blocker.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes.

The cystic fibrosis transmembrane conductance regulator (CFTR) plays a crucial role in regulating fluid secretion by the airways, intestines, sweat glands and other epithelial tissues. It is well established that the CFTR is a cAMP-activated, nucleotide-dependent anion channel, but additional functions are often attributed to it, including regulation of the epithelial sodium channel (ENaC). The...

متن کامل

Functional Interaction between CFTR and the Sodium-Phosphate Co-Transport Type 2a in Xenopus laevis Oocytes

BACKGROUND A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 306 3  شماره 

صفحات  -

تاریخ انتشار 2014